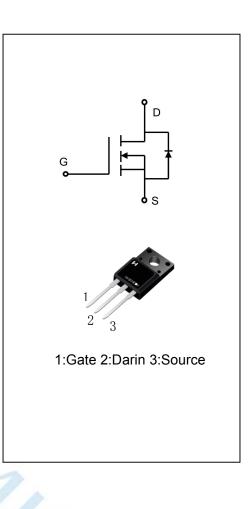
SFF16N65

16A, 650V N-CHANNEL MOSFET

GENERAL DESCRIPTION

This power mosfet is an N-channel enhancement mode power MOS field effect transistor which is produced using Hi-semicon proprietary F-CellTM structure VDMOS technology. The improved planar stripe cell and the improved guard ring terminal have been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are widely used in AC-DC power suppliers, DC-DC converters and H-bridge PWM motor drivers.


Features

- ♦VDS(V)=650V,ID=16A
- ♦R_{DS(ON)}

 $TYP:385m\Omega @V_{GS}=10V I_{D}=10A \\ MAX:500m\Omega$

Applications

- Power faction correction (PFC)
- Switched mode power supplies (SMPS)
- ◆Uninterruptible power supply (UPS)
- ◆LED lighting power

ORDERING INFORMATION

Part No.	Package	Marking	Material	Packing
SFF16N65	TO-220F-3L	SFF16N65	Pb Free	Tube

ABSOLUTE MAXIMUM RATINGS (TJ=25°C unless otherwise noted)

Characteristics	Symbol	Ratings	Unit
Drain-Source Voltage	V _{DS}	650	V
Gate-Source Voltage	V _{GS}	±30	V
$T_c = 25^{\circ}C$		16	
Drain Current T _c = 100°C	lo lo	10.8	A
Drain Current Pulsed(Note 1)	Ідм	64	А
Power Dissipation(T _c =25°C)		42	W
-Derate above 25°C	P _D	0.36	W/∘C
Single Pulsed Avalanche Energy (Note 2)	E _{AS}	511	mJ
Operation Junction Temperature Range	TJ	-55~+150	°C
Storage Temperature Range	T _{stg}	-55~+150	°C
Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds	TL	300	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	MAX	Unit
Thermal Resistance, Junction-to-Case	Rejc	3.75	°C/W
Thermal Resistance, Junction-to-Ambient	R _{0JA}	62.5	°C/W

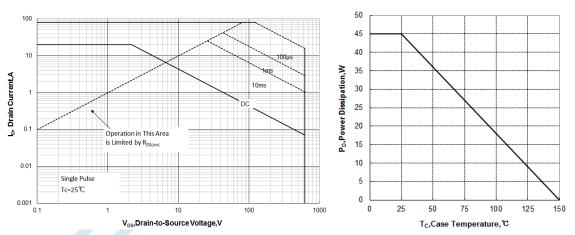
ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit	
Off Characteristics							
Drain -Source Breakdown Voltage	B _{VDSS}	V _{GS} =0V, I _D =250µA	650	703		V	
Drain-Source Leakage Current	IDSS	V _{DS} =650V, V _{GS} =0V	-	1.6	100	nA	
Gate-Source Leakage Current	Igss	V _{GS} =30V, V _{DS} =0V		4.3	100	nA	
Gate-Source Leakage Current	I _{GSS}	V_{GS} =-30V, V_{DS} =0V		-0.7	-100	nA	
On Characteristics							
Gate Threshold Voltage	V _{GS(th)}	V _{GS} = V _{DS} , I _D =250µA	2	3.3	4.0	V	
Static Drain- Source On State		V _{GS} =10V, I _D =5A		372	500	mΩ	
Resistance	R _{DS(on)}	V _{GS} =10V, I _D =10A		385	500	mΩ	
Dynamic Characteristics							
Gate Resistance	Rg	V _{GS} =0V; f=1.0MHZ	1	2.9	10	Ω	
Input Capacitance	Ciss	V _{DS} =25V		3340	1-		
Output Capacitance	Coss	V _{GS} =0V		242.8		pF	
Reverse Transfer Capacitance	Crss	f=1.0MHZ		4.0		pF	
Switching Characteristics							
Turn-on Delay Time	t _{d(on)}			32			
Turn-on Rise Time	tr	V _{DD} =250V		71.3			
Turn-off Delay Time	t _{d(off)}	R _G =10Ω; I _D =10A		72		ns	
Turn-off Fall Time	t _f	(Note 3.4)		53.6			

SFF16N65

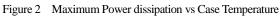
Total Gate Charge	Qg	V _{DS} =600V, I _D =16A	 56.5	
Gate-Source Charge	Q _{gs}	V _{GS} =10V	 11.5	 nc
Gate-Drain Charge	Q _{gd}	(Note 3.4)	 20.3	

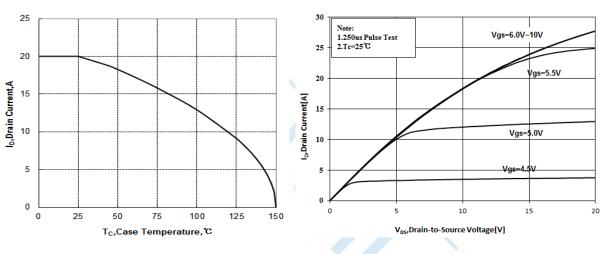
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

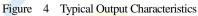

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous Source Current	ls	Integral Reverse P-N			16	
Pulsed Source Current	I _{SM}	Junction Diode in the MOSFET			64	A
Diode Forward Voltage	V _{SD}	I _S =20A,V _{GS} =0V		0.79	1.2	V
Reverse Recovery Time	Trr	I _F =20A,V _R =520V,		566		ns
Reverse Recovery Charge	Qrr	dIF/dt=100A/µS		233		μC

1.Pluse width limited by maximum junction temperature

2.L=10mH, I_{AS}=10A, V_{DD}=80V, V_G=10V, R_G=25 Ω , starting T_J=25°C


3.Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%


4.Essentially independent of operating temperature


Typical Performance Characteristics

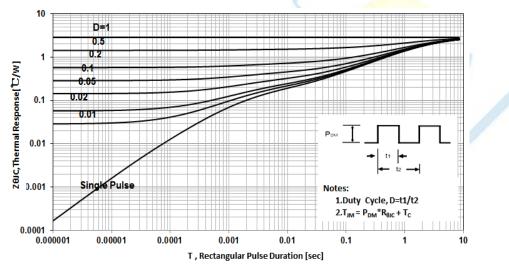
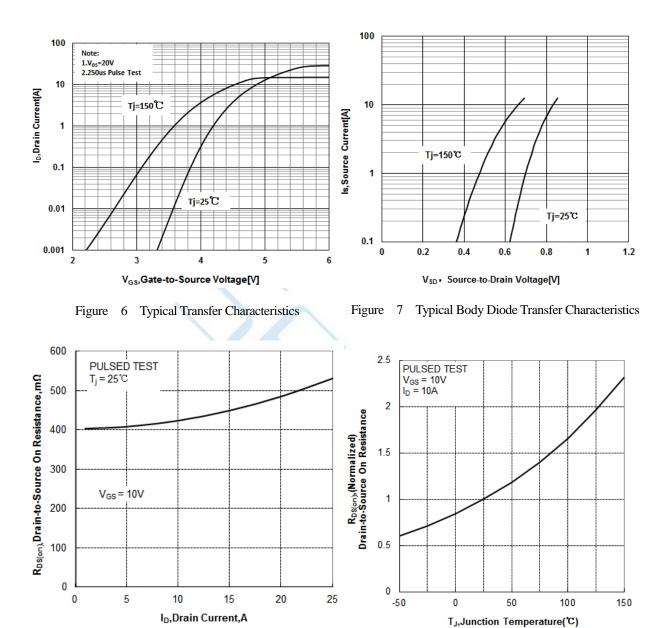



Figure 5 Maximum Effective Thermal Impedance , Junction to Case

Typical Performance Characteristics

Figure 8 Typical Drain to Source ON Resistance vs Drain Current

Figure 9 Typical Drian to Source on Resistance vs Junction Temperature

Typical Performance Characteristics

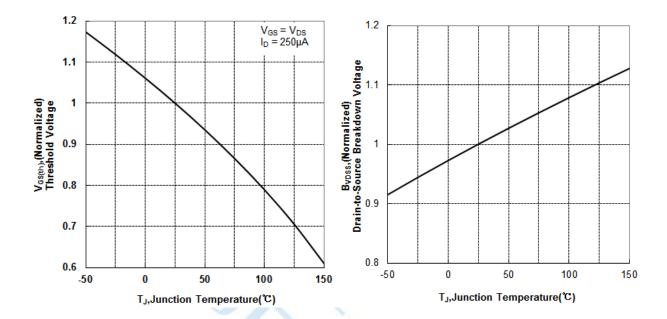


Figure 10 Typical Theshold Voltage vs Junction Temperature

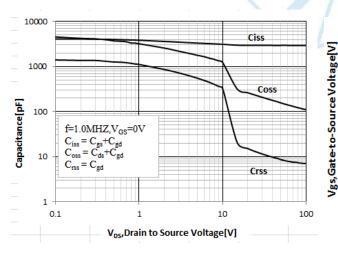
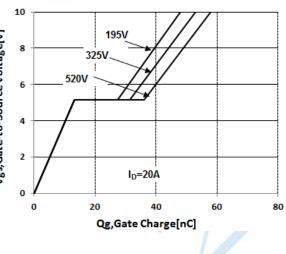
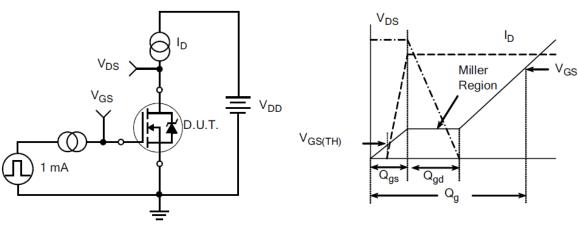
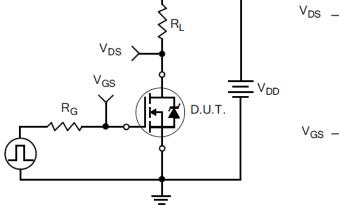


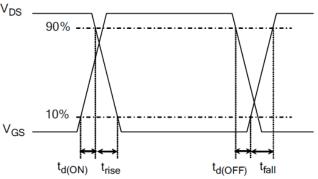
Figure 12 Typical Capacitance vs Drain to Source Voltage

Figure 11 Typical Breakdown Voltage vs Junction Temperature

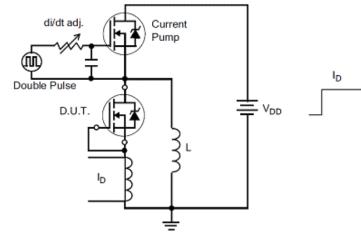

Figure 13 Typical Gate Charge vs Gate to Source Voltage

Test Circuit

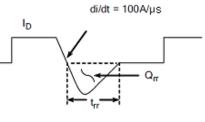


Gate Charge Test Circuit

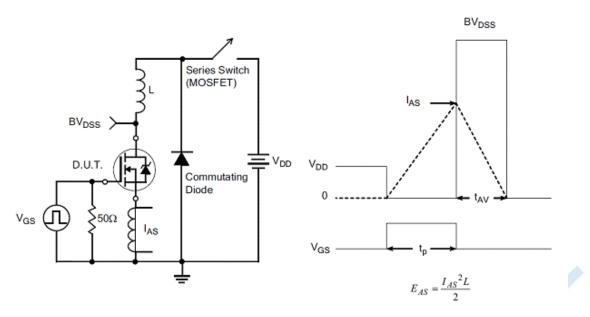
Gate Charge Waveform



Resistive Switching Test Circuit

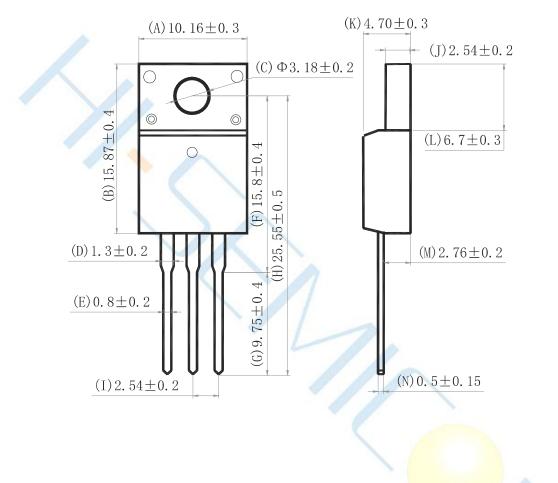


Resistive Switching Waveforms


Test Circuit

Diode Reverse Recovery Test Circuit

Diode Reverse Recovery Waveform



Unclamped Inductive Switching Test Circuit

. Unclamped Inductive Switching Waveforms

Package Dimensions of TO-220F-3L

Unit:mm

Disclaimer:

► Hi-semicon reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.

► All semiconductor products malfunction or fail with some probability under special conditions. When using Hisemicon products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Hi-semicon products could cause loss of body injury or damage to property.

Hi-semicon will supply the best possible product for customers!